Telescope mirror supports: plate deflections on point supports
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Abstract

We describe the deflections of uniform-thickness plates
supported by discrete points and by continuous rings. The
calculations are based on the theory of deflections of thin
plates. In some cases the effect of shear on the deflections is
also included. The optimum locations of the support points
for a wide variety of simple geometries are given. The
deflections and methods for estimating the deflections for the
limiting case of a large number of support points are also
described. Since the slope errors induced in a mirror by its
support may be relevant to optical image quality, we describe
a method of relating the surface deflections to the surface
slopes, and hence the geometric optics image blur that results
from a support system. These results are particularly useful
for the support of very thin mirrors, where the optimum sup-
port is needed.

1. Introduction

One of the most challenging problems in the design and
construction of large telescopes is that of properly supporting
the primary mirror so that the large forces due to gravity do
not objectionably alter its shape. High quality telescopes typi-
cally require that the mirror deformations be limited to some
small fraction of the wavelength of light that the telescope is
designed to use. For optical telescopes in particular, the
deflection tolerances are sufficiently small that great care must
be taken in the mirror support if these tolerances are to be
met.

As a telescope points to different zenith angles the direc-
tion of gravity relative to the primary mirror changes. As a
result of this, a mirror support system must be able to carry
this force both in the axial direction (normal to the mirror
surface) and in a radial direction (parallel to the mirror sur-
face). These two components typically have different support
systems, and it is often the case that the axial support is the
more delicate and difficult support problem. For large mirrors
this axial support is usually provided by some distribution of
forces applied along the back side of the mirror, or at some
points located along the center of gravity of the mirror. The
radial support system is similar in form, typically being a sys-
tem of forces applied either around the periphery of the
mirror, or at discrete points located along the midplane of the
mirror. In this paper we will not deal explicitly with the prob-
lems of radial support, but will only address the nature of
axial supports. This general problem has been of great
interest in the past, and a detailed study of axial support sys-
tems in theory and practice was made by Couder (1931).
More recently, the entire field of the support and testing of
astronomical mirrors was reviewed in a symposium (Crawford
et al, 1968). Several specific mirror supports are also
described by Pearson (1980).

The largest telescopes have used a discrete set of point
supports for their axial support. The Soviet 6m telescope has
60 back supports, while the Hale 200" (Sm) has 36 back sup-
ports, and smaller telescopes such as the Lick 3m have 18
back support points. These points of support are points at
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which specified forces are applied, often with counterweight
systems. Other methods of applying these forces include air
pads and whiffletree systems. In other cases, back support
has been achieved by using ring supports with, for example,
fluid filled tubes to achieve a uniform distribution of force
along the circumferential length of the tubes.

Although axial supports for telescope mirrors have been
dealt with in some detail by previous authors and telescope
designers, the current desire to build extremely thin and large
mirrors makes the subject of great interest. General design
guidelines for possible supports of these very flexible mirrors
will be most useful.

In addition, the recent interest in telescope mirrors that
are segmented or composed of muitiple telescope primaries,
makes the uniformity of focal length a new and critical issue.
With the support of only a single mirror concern over the
accurate control of the radius of curvature of the mirror is
minimal. In this case, changes in the focal length of the mir-
ror due to imperfections in the support only require a
refocusing of the telescope, something which is often required
as a result of thermal effects in any case. For telescopes that
have primaries with multiple mirror components, the focal
lengths of the mirrors should either not change at all, or at
least all change together. Particularly for segmented pri-
maries, where one may attempt to accommodate both obser-
vations in the visible (seeing limited) and infrared (diffraction
limited) regimes, all segments must have the same focal
length to very high accuracy. Of course for the support of
flats the proper control over the curvature is essential as well.

In section 2 we will develop some scaling laws and other
semi-quantitative rules to aid in the conceptual design of axial
support systems. In keeping with our concern over focal
length, we will consider any plate deformations that alter the
focal length as detrimental. A variety of examples of optim-
ized support systems will also be given as further aid in the
design of supports. Because the goals of this work are rather
general, simple idealized cases are discussed, rather than
specific realistic cases that must be dealt with in the detailed
design of a specific support system. In this spirit we will typi-
cally ignore the effects of central holes, variable mirror thick-
ness, shell effects, and the effects of shear in mirror deforma-
tion. Section 2 describes general scaling laws that apply to the
deformation of thin plates. Section 3 discusses the deflection
of plates that are infinite in extent. These have no edge
effects and thus represent the limiting case of a mirror that is
supported at a great many points. Section 4 gives for a
variety of cases the optimized support configurations for cir-
cular plates. These cover both point supports and continuous
ring supports. In the final section we briefly address the issue
of support tolerances and sensitivity.

In keeping with the optical motivation for these studies,
we evaluate the effect on the image quality of imperfections
in the mirror support. There are two common ways of
evaluating mirror distortions. 1) Using the geometric optics
approximation the image blur is evaluated from slope errors
in the mirror surface. 2) The other extreme characterizes the
mirror surface by the root mean square deviation (rms) of
the mirror from its desired shape, and thus characterizes the
image by an rms wavefront error.
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This approach assumes that the wavefront error can be
characterized by a single number and that this determines the
optical effects. Although this is an excellent approximation
when the wavefront errors are small compared to the
wavelength of light, and the geometric limit is a good approxi-
mation when the wavefront errors are large compared to the
wavelength of light, the intermediate case requires the fuil
and complex application of the physical theory of light. Some
tools for understanding this intermediate region are contained
in our report to this conference "The Effects of Mirror Seg-
mentation on Telescope Image Quality (Mast et al.)." Con-
ceivably the "optimum" support support will depend on which
approach one chooses for analyzing image blur, but as we
show in the next section, a fairly quantitative relation can be
made between rms surface error and maximum slope errors,
so both approaches should give essentially identical results.
We typically will optimize on the rms surface deviation from
the mean deflection rather than the slope errors. The peak-
to-valley error is also closely related to the rms surface error.
It is commonly the case that the peak-to-valley error is about
five times the rms, and hence they are essentially equivalent.
However, since the peak-to-valley only gives information
from two extreme points, whereas the rms is averaged over
the entire surface, the rms is normally the more useful sur-
face characterization.

2. Scaling Laws

In the theory of thin plates where only flexural bending
contributes to the plate deflection and shear effects are
ignored, deflections of circular plates take the form:

4
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where

g = the applied force per unit area

a = the 3p1ate radius,

D = EK/12(1—v?), the flexural rigidity,

E = the material elastic modulus,

v = the material Poissons ratio,

h = the plate thickness, and

k is a parameter that depends on the nature of the
support configuration.

For self-weight deflections this gives the well known scaling
law that the deflections vary as:
at
dv—o 2)
h2
For non-circular plates a generalized form of this relation is
more useful.
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where A is the plate area and £, the support efficiency, is a
dimensionless parameter that depends on the support

 configuration. This form is useful for estimating for example

the deflections of hexagonal plates, a shape desired in seg-
mented mirrors.

When one considers the deflection with N support
points, it is evident that a pertinent parameter is the area per
support point, rather than the area itself. Thus one can couch
the rms deflection of a plate supported by N points in the fol-
lowing form:

8,,,,5 = YN%(‘%)Z (4)

In this form, once vy, is known, the deflection for a mirror
of any size can be found.

The virtue of this form of the deflection law is that the
parameter 7y » becomes a fixed constant for an optimized sup-
port configuration, at least in the limit of large N. For small
values of N there will be noticeable edge effects that will
make vy a function of the number of support points. As the
number of support points increases yy will decrease to an
asymptotic limit .. Improperly optimized support systems
will of course have a larger y than otherwise. Recognizing
that y is a measure of the efficiency of a given support
configuration, we call y the support point efficiency.

We will typically ignore the effects of shear. This eases
the calculations and allows us to ignore the effects of plate
thickness, except in D. However, a rough estimate of the
additional deflections that will result from the inclusion of the
effects of shear can be found by use of the formula

h
8 o1 = 8bending 1+ a(;)zl (5)

where u is an effective length between support points, and «
is a constant. If one defines u from the relation

Nrul= A (6)

then for a variety of cases numerically evaluated one obtains
an approximate value for a of a = 2. Note that this rough
formula only applies to plates that heve optimized supports.
A non-optimized support may have a much larger bending
deflection but essentially the same shear deflection, and the
inclusion of shear effects then results in a smaller change than
indicated. We emphasize that the effects of shear scale
according to the thickness-to-support-point span ratio, rather
than according to the thickness-to-plate-radius ratio.

As mentioned earlier, the optical effects due to mirror
deflections are often estimated using surface slopes rather
than the rms deviation of the surface from its desired shape.
The slope, the rms deflection, and the effective length must
have at least a rough relationship,

S~ 8,/ u @
This gives the scaling reiation of
e Ay 1 Ay

One can test these relations in a variety of cases to find a
value for the parameter g. We have found for a surprising
variety of cases that, for systems optimized to give the
minimum rms deviation from the desired surface, the max-
imum slope can be found (within ~20%) by using

=N )

The maximum image diameter is four times the maximum
slope. Because of this well defined slope vs displacement rela-
tion, and because we are particularly interested in deflections
that are sufficiently small to allow diffraction limited perfor-
mance, we will characterize the surface by its rms deviation
from the ideal one for the rest of the paper. This means that
the average deflection on a given support system has been
removed. We include all other effects including changes in
the overall radius of curvature (focus).

3. Infinite Plates
Real finite plates have a variety of edge effects that tend

to increase the plate deflections and appreciably complicate
the analysis of their deflection. If a plate is simply supported
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at many points, the deflections near a given support point will
be dominated by the locations of the neighboring support
points and will be only weakly effected by the location and
shape of the free edge of the plate. For these reasons,
infinite plates are worth studying. We also expect that no
finite plate can be supported as efficiently as an infinite plate,
thus, the efficiency coefficient for an infinite plate will set a
lower bound on the efficiency coefficient of any point support
system for a finite plate. Finally, the study of infinite plates
can serve as a useful guide for the optimal topology of sup-
port point locations for finite plates.

If we restrict ourselves to point support grids that are
identical for all support points,, only three topologies are pos-
sible. These are shown in Figure 1 and are the ones with
three neighboring points (hexagonal), with four neighboring
points (square), and one with six neighboring points (triangu-
lar). Because these support topologies are different, we
expect that their efficiency coefficients will differ as well.

The deflections of an infinite plate supported by rec-
tangular rows of support posts is a classic problem in plate
theory. A discussion of this problem and its solution are
given by Timoshenko (1959). This solution can be readily
applied to the square grid case.

The deflections of the plate on triangular and hexagonal
support point grids can aiso be readily found. Following an
idea by Medwadowski (1981), we consider the deflections of a
plate supported by a rectangular grid of support points and
use the principle of linear superposition to find the trianguiar
and hexagonal case deflections. Details of this derivation, and
the results are given in Appendix A. The results for these
grids can be summarized by determining y as defined in
Equation 4. We find

Y hexagonal = 2.36 x 1073
quuare = 133 X 10_3
Y riangular = 1.19 x 10_3

Note that these results are independent of Poissons ratio ».

Not surprisingly, the triangular grid is the most efficient,
and the hexagonal grid is decidedly the worst. It follows from
this that the triangular grid is the basic topological pattern that
should be used as a starting point in the optimization of sup-
port point forces and locations for finite plates.

4. Circular Plates

We now turn to the most common shape for primary
mirrors, the circle. As mentioned before, we will not expli-
citly discuss annular plates or variable thickness plates, or
include the effects of shear or the curvature of the plate.
These effects should be included in any detailed analysis of a
specific system. We will first discuss the deflections that
result from point supports. We then evaluate deflections due
to ring supports which for some configurations form a limit-
ing case of point supports.

In analyzing and optimizing support systems in general,
we strongly emphasize that the supports provide specified
forces, but do not by themselves define the position of the
mirror. In the case of N support points, three of these points
can be specified to define the rigid body motion of the mirror,
but the other support points should in practice be allowed to
float in position and only provide the specified force. It fol-
lows from this that the deflections at the support points are
not required to be zero for the overall optimized support.
This is important in developing a physical. intuition for these
systems and differs markedly from the intuition one has of
conventional supports of plates on fixed points.
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To find the deflections of a circular plate supported by a
series of points we will use the principle of superposition and
divide the support points up into groups, each group contain-
ing k points uniformly spaced around a circle of a fixed radius
as shown in Figure 2. The derivation for the deflections due
to a single such group is given in Appendix B. The deflection
has the form

w(p,8) = Y. w,(p) cos(km#) 10)
m=0
where the formulae for w,, (p) are given in Appendix B. To
find the deflections from the full support system, we simply
add the deflections from each group, weighting the deflections
by the fraction of the load being carried by that group. Thus

n
W(P,G) = 25,’“’[(”{,3[,9,9“(#[), (12)
i=1
where

w(p,0) = plate deflection

n = number of groups or rings

€; = the %ctionall load carried by i ring

€ =

= plate deflections with a single ring of point supports

n, = number of support points on the i ring
; = radius of the i* ring

¢; = azimuthal offset of points on it

=z
[

ring

A given support system is optimized by varying the forces,
radii, and rotation angles of each group to minimize the rms
deflection. For the cases described below the optimization
was made by numerically evaluating the rms deflection with a
computer, and using a standard optimizing package for non-
linear functions. In addition, some of these results have been
independently checked with a finite element analysis program.
(Taylor, Asfura, and Budiansky, 1982)

A single group of support points gives an rms deflection
that varies with the radius of the ring and with the number of
support points on the ring. The rms deflection (or rather the
support efficiency) as a function of these two parameters is
shown in Figure 3. Note that as the radius of the ring
approaches one, and the number of support points becomes
large, that the deflections approach those of a plate simply
supported along its rim. It is interesting that six points is
already a very close approximation to a continuous ring. As
the radius of the ring approaches zero, the deflections become
those of a plate supported by a singie point at its center. The
deflections of the plate supported by a ring at the outer edge
define a kind of "natural® scale for the deflections. The rms
deflection near the optimum is shown in Figure 4 and is a fac-
tor of about 25 smailer than the natural scale. This dramatic
improvement is a reflection of the fact that deflections vary as
a*. This also leads to great sensitivity to support errors.
Except very near the minimum itseif, the rms varies essen-
tially linearly with the radius of the support ring.

When one analyzes supports with multiple rings of
points a variety of point topologies become possible. In other
words, specifying the number of support points does not pro-
vide enough information to readily optimize the support sys-
tem. If one considers the mathematical character of the rms
deflection function for a specified number of points, the func-
tion will have multiple extrema in general. These extrema
typically exhibit different symmetries, and thus the topologies
for each extrema should be found and then each used as a
starting point for the optimization.

The problem of optimizing the positions and forces of N
points has 3N variables and 3 constraints ( net force = 1, net
moments = 0). In addition rotation of the coordinate grid




about the plate center has no effect. Thus we seek the
minimum value of a function in a 3N-4 dimensional space.
Since this can be a very large space, and the function is non-
linear in the variables, the mathematical difficulties are enor-
mous. We will reduce the difficulty by adding symmetry con-
ditions whenever possible. For most cases of interest, a sys-
tem of support with reflection symmetry about 3 axes is
desired. This reduces the problem to 2N/3 — 1 variables.
We now divide this space into regions with distinct symmetry
properties relative to the reflection axes. These can be exhi-
bited on one sixth of the circular plate. An example of this
decomposition for 18 points is shown in Figure 5. The nota-
tion uses the superscript for the number of points on the first
symmetry axis, the subscript for the second symmetry axis.

Some topologies are obviously not candidates for
efficient support systems. Others are, and these have been
optimized with the computer. The number of local minima
for each topology is believed to be very small, probably one
in many cases. When multiple minima exist, we are not cer-
tain that the lowest minimum has been found, but expect that
this is the case.

We have found that the topologies that produce the
lowest extrema (smallest rms deflection) are those approxi-
mating a triangular grid, as we would expect from the discus-
sion on infinite plates. As the number of support points
grows, the number of possible topologies grows as well, and
for large numbers of support points selecting the best topol-
ogy may be a difficult task. We have found in fact that
several topologies may have essentially identical support
efficiencies. Particularly for circular plates and some vaiues of
N, the triangular grid may not always provide an obvious
natural topology. For example, for N = 9, the triangular grid
is unsuitable and the support is quite inefficient. We know
that no support system can have an efficiency factor better
than that of the infinite triangular grid. Thus, in practice the
efficiency of a given optimized topology can be compared to
the triangular grid and an upper bound on the possible
improvement by choosing another topology can be assessed.

A variety of supports have been optimized. For these
cases we have assumed » = 0.25. The simplest cases are
shown in Figure 6, indicating the number and location of the
support points, and the alternate topologies considered. Con-
tour plots of the plate deflections for these cases are shown in
Figure 7. The actual optimum parameters are given in Table
1 which gives the number of support points, the number of
parameters optimized, the ring radii, the forces for each ring
of supports, the azimuthal rotation for .each ring of supports,
the achieved efficiency (from which the rms deflection for a
given case can readily be found using Equation 4), and the
ratio of the peak-to-valley deflection to the rms deflection.
The efficiency coefficients found are also plotted in Figures 15
and 16 along with the efficiency functions for the three
infinite plate support geometrics. We now give brief descrip-
tions of the support systems.

The single support point system has no parameters to be
optimized, and has rms deflections some 2.2 times greater
than the limit suggested by the infinite triangular grid. The
two point system has a radius that can be varied, and when
optimized, this system gives an efficiency function that is 7.2
times the limit. The three point support is the most common
of support systems, and its optimum occurs at the well known
radius of B8 = 0.645. It is somewhat surprising (and disap-
pointing) that the best three point efficiency is 4.8 times the
limit. Continuing on the single ring cases, we see that a six
point system is optimized for B = 0.683 and has an efficiency
2.5 times the limit. Adding more points to a single ring now
becomes less efficient than creating new rings of support
points. The simplest addition is a new ring with zero radius, a

point at the center. This form of seven point support system
is noticeably more efficient than the six point system, as is
seen in Figure 16. This naturally raises the question whether
a six point system with one point at the center surrounded by
five points can be more efficient than the conventional single
ring six point system. Optimization reveals that the single 6
point ring is better by about 13%.

Full three ring systems are needed when we move to
nine point supports. Here symmetry allows the two topolo-
gies shown in Figure 8. Both have almost identical
efficiencies. Note that the nine point systems have much
lower efficiency than the six or seven point supports. It can
be explained as due to the fact that "complete” triangular grids
cannot be made with nine points.

A complete triangular grid can be made with 12 points
and the results for the best topology are given in Table 1.
The topologies and locations of the optimized points are
shown in Figure 9. The best two, 12} and 12¢, have essen-
tially the same efficiency. As €xpected, the triangular grid
gives superior performance, with an efficiency about 1.6 times
worse than the infinite triangular grid. Optimized 15 qoint
Systems are shown in Figure 10. Topologies 1512 and 15 are
about equal, but since no triangular grid configuration is pos-
sible, the efficiency is poor.

Moving up to the next complete triangular grid we find
the 18 point system (we omit the central point). Several
topologies give equivalent efficiencies (189, 18/, and 184),
indicating that strict triangular grid topologies are not essen-
tial, and the circular nature of the plate is more important.
Several optimized topologies are shown in Figure 11. Con-
tour maps of the deflections are shown in Figure 12. Actually
completing the grid by adding the 19th point at the center
%i6ves an even higher efficiency as is seen in Figures 15 and

As we increase the number of support points, it probably
becomes less important to choose numbers of support points
consistent with triangular grids. The next triangular grid sys-
tem has 27 support points, with an optimum efficiency about
1.4 times that of the infinite triangular grid. Several optim-
ized topologies are shown in Figzure 13.  Quite similar
efficiencies are found for 273 and 27¢.

We complete our examples of discrete supports with a 36
point support system. The 200" telescope primary has a 36
point support system, and the proposed support system for
the individual mirror segments of the University of California
Ten Meter Telescope has this number of supports. There are
28 different topologies that satisfy the stated symmetry condi-
tions. The best candidates have been optimized,and the sup-
port point locations are shown in Figure 14. As usual, several
systems ( 36§, 36{, 363) are equally efficient. The optimized
support efficiency is only about 40% worse than that of the
infinite triangular grid.

When so many support points are used, the system is so
complex that a variety of similar support positions gives simi-
lar results. For example, if one assumes that all 36 points
must lie on three rings of 6, 12, and 18 points, one greatly
reduces the number of variables, but the final optimum is
only about 15% worse than the fully optimized system. This
does not mean that one can achieve this theoretical perfor-
mance without great care. On the contrary, as one goes to
more and more supports, the care and detail in the analysis
required to achieve the optimum goes up dramatically. Quite
minor changes in the parameters can lead to large changes in
the deflections. Considered in the abstract, however, it does
seem to be the case that the multiple dimensional space in
which one searches for the minimum does have rather flat
"valleys" where more than one set of parameters will give
rather similar rms deflections, Even so, the walls of these
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"valleys" are exceedingly steep, and great care is needed to
achieve the performance indicated here.

Based on our experience with the supports analyzed
here, it appears likely that if one goes to even more support
points, concentric rings of point supports are an adequate
approximation to the ideal, but more complex optimum
geometry. The most efficient use of support points in this
situation is likely to be one with the number of supports per
ring increasing outwards in the series 6, 12, 18, 24, etc. As
noted before, the degree to which one has optimized the use
of the support points can be checked by comparing the
efficiency coefficient against that of an infinite triangular grid.
For a well-designed system, as the number of support points
becomes large, the edge effects become negligible, and the
efficiency coefficient should equal that of the infinite piate.

Another way to evaluate the quality of the point support
systems is to compare them with special cases having an
infinite number of support points on each ring. Thus we turn
to the analysis of continuous ring supports. These are notice-
ably simpler to analyze and optimize than discrete point sup-
ports, since the number of parameters for optimization is
smaller and the actual analytic expressions for the deflections
are substantially simpler. One again uses the principle of
superposition, and uses the formula for a ring support as
given in Appendix B. Since the number of support points is
not defined, we return to the notation of Equation 3 and
study the parameter £ as a function of the number and radii
of the ring supports. As with points, we do not insist that the
deflections vanish at the rings but rather let the deflections at
the rings be determined from the elastic equations governing
the plate deflections.

We have optimized the radius and force for each ring,
and the results are shown in Figure 15. We have also
included the theoretical limits for the three infinite plate
cases, and some of the optimized point support systems in
this figure.

It is interesting to use this graph to compare a ring
system’s efficiency against the point support system
efficiencies. For example, notice that the deflection achiev-
able from three continuous rings is only slightly better than
that achieved with three "rings" of discrete support points as
seen in the 36 point support system. This provides
confirmation for the idea that adding more points to a given
ring is not productive beyond a certain point, and that one
benefits much more by adding new rings of support points.

The support point efficiency is shown in Figure 16. As
expected, as the number of support points grows, the
efficiency approaches that of a triangular grid.

5. Sensitivity of Deflections to Support Perturbations

In the preceding discussion, we have given the theoreti-
cal limits for plate deflections that can be achieved. In prac-
tice, various approximations, simplifications, and fabrication
or alignment errors will degrade the performance of the sup-
port system. Particularly when the number of supports is
large, the necessary superposition of the deflections associated
with each support point that will allow almost perfect cancella-
tions of these deflections becomes a very delicate procedure.

When one is supporting a single curved mirror, main-
taining the exact radius of curvature is not always critical, and
in this case, some relaxation of the tolerances is often possi-
ble, since the first order effect introduced by analysis errors,
etc., is typically a change in the curvature of the plate. One is
fortunate when this can be focused out. For cases where an
optical flat is being supported,, or when a series of segments
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are being supported that must have identical radii of curva-
ture, any error in the mirror shape becomes critical.

If we assume that the optimum support is known, the
effect of displacements of the supports (in the plane of the
mirror) from their optimum location can be understood by
the following. The displacement of a point is equivalent to
the support force being in the correct position plus 2 moment
being applied at the support point with a size equal to the pro-
duct of the force at that point times the displacement of the
support point. The superposition of the resulting deflections
from each of the support point errors gives the additional sur-
face error introduced by the support deflections.

Perturbations of support positions and forces must
satisfy the constraints of overall equilibrium; the sum of the
forces equals the weight of the mirror, and the net moments
about the mirror center must vanish.

The true optimization of a support system is an
extremely painstaking procedure. However, we conjecture on
the basis of several numerical &xperiments, that the exact
support positions can be adjusted over a small range without
grossly increasing the deflections, as long as one carefully
optimizes the forces applied at those points. Fortunately, the
mathematical optimization of the forces is a linear problem,
hence a unique optimum exists. It can be easily found if the
deflection for each group of support points (evaluated as sole
supports) is known. As indicated earlier, the deflections at
the support points will not necessarily vanish, but will follow
from the analysis. An example showing two configurations of
the same topology is shown in Figure 17. These have essen-
tially identical efficiencies.

6. Conclusions

We have described the general concepts, general scaling
laws, and given some specific examples (infinite plates and
circular plates) for supporting thin plates on a number
discrete points. These descriptions can serve as the basis for
beginning the design of support systems for thin telescope
mirrors. In addition they provide a basis for evaluating the
relative efficiency of a given system. For any real mirror sup-
port system, an analysis that includes the detailed shape
(non-circular geometry, central holes, etc.} and the curvature
is essential. A careful examination of tolerances, although
difficult, is also invaluable.
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Appendix A

Deflections of Semi-Infinite Plates
Supported on Many Support Points

The question of efficiency of support of a large plate can
be addressed by determining the root mean square deviation
of the deflection from the mean deflection. Since the plates
are assumed to be very large, with many support points, edge
effects can be neglected. Consequently, the best support dis-
tribution of points will be among the class of geometries
where all support points look alike.

There are three geometries that are possible. If we con-
sider a given point, it can have either 3, 4, or 6 nearest neigh-
boring points. No other distribution of points will have the
symmetry that all points ook alike. These three topologies
are shown in Figure 1. '

We now wish to caiculate the deflections of a plate sup-
ported by each of these three support types. Since we are
interested in the support efficiency, we must arrange the sup-
port spacing so that the area carried by each support point is
the same in all three cases. In this way, we can directly com-

pare the deflections.

The deflections of a rectangular grid of support points
with spacings of a and b are described by Timoshenko and
Woinowsky-Krieger (1959), so the deflections for the case of
four neighboring support points can be readily found.

b* 4
Drectangle(aa byx,y) = 3‘%‘6(1""5‘)2 + Ag

(=1) M 2cos TEX

o0

+ 92b
273D 4. msinhe ,tanha ,

(tanhe,,) Ln—glsinh—'—n—ay—(a n-Htanha ,,,)cosh—"i;ll

where

+ tanha
Ay = _4cb 3 _}_(am___‘f‘_m__.T__’"_)
273D m=2,4.6... n tanh‘a,,

mmb
2a
Setting @ = b gives the square grid case.

The deflections for the six point case (a triangular grid)
can be found by using the principle of superposition. An
elegant solution for this problem was obtained by S. 1.
Medwadowski (1981) using the superposition of two different
plate support configurations. We present here a somewhat
simpler solution based on the same idea. Consider the
geometry shown in Figure Al. We can write the deflections
as the sum of the deflections of a rectangular grid of supports
and the deflections of a displaced rectangular grid of supports.

If we assume the spacing of the triangular grid is b, and
assume the rectangular grid has a spacing of a and b, we can
write the rectangular grid deflections as

a=-3b,

Drecmngle (a,b; x,y) with

oy =

The triangular grid will then give deflections of
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1
Drriangle(b’xvy) = _2_Drectangle (a, b;x,y)

1 , a b
+ fDrectangle(as bix ~ ?)y - 2—)

The three point support system can be handled in a simi-
lar way. Figure A2 shows the hexagonal grid of supports.
Assuming the point separation is b, one can write the
deflections as the sum of four displaced rectangular
deflections as is indicated in the figure. We then obtain for
the hexagonal grid, deflections of

1
Dhexagon (b;x,p) = Z'[Drecmngle (a,,B;x,y)

+ Drectangle(a’ﬁ;x_%’y - g)

b
+ Drectangle (a,8; x=y,y) + Drectangle (a,B; x— 2_»}"— %)

where

o =35, B=+/3b, and y =—b.

Note that for these cases, the areas per point are:

V3
Arriangle = 2_ b

Asquare = 5’
A

Ahexagon =3 4
We write the solution in the form
=4 (A4

8=y ) ( N) .

where g = the applied pressure on the plate,
?4 = the modulus of rigidity of the plate,
N

= the plate area per support point.

We can define 8 as either the peak deflection, the mean
deflection, or the root mean square deviation of the deflection
from the mean. For each of these we can compare the rela-
tive efficiencies of the three configurations. Values of v (x
10%) are given for each of the definitions and configurations
in the following table.

configuration peak mean rms
triangular 4.95 3N 1.19
square 5.80 3.87 1.33
hexagonal 970 470 236
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Appendix B

Deflections of a Circular Plate on a Ring of Point Supports

The deflections of thin, constant thickness plates are of
great interest in optical support systems. Many problems can
be solved by the appropriate superpositions of solutions of the
case of a circular plate axially supported by a single concentric
ring of point supports (as shown in Figure 2). We derive
here the solution to this problem.

Assume a uniformly loaded plate of radius g and
stiffness D, with total load P, is supported by k point sup-
ports located at r = b (=8a) and 0=2jm/k, j=1, . k.
The deflection w(r,8) is governed by

4o P P& (=0 [ 2m
DVew 7ra2+kj§1 5 516 Pk 0))

k .
The Fourier series for ¥, 8(0 - Akﬂj is of the form
=
a, oo
—2£+ Y a,,coskmo,
m=1

with

Ly Zfa 60— 27| coskma dp = &
am=7rj§lo T coskm =
hence the loading is

P P P a(r—b) &
~ + 27rbéi(r b) + P Y coskm®.

m=1
Assume the deflection has the form
w(r,0) = 3 w,(r) coskmé, ()
m=0
where Wy is governed by

1 d} rll d]| am P P
——r—{=— = = et ——8(r—5),

r drtr dr[r dr[r dr ”] ma?  2mb (r~8)
i.e., wy is just the deflection of a plate supported on a ring of
radius . We can obtain wy by superposing the deflections of

simply supported plates that are uniformly loaded and ring-
loaded, with total loads equal and opposite, to obtain

87D _ 1—@2 (3+v)—(l—v)22
Pa2 Wo(p) = 2 [ 1+» 3)
1—p? | 5+
~ | TP B +pDmB, p<p
1-p%) | (7+3v) —4(1-)8? |
=( 8p) (7+ V)1+IE v)B +p? +(/32+p2)1np, p>B.
For m 2 1, we have
Vi d_#m)] p
[dr2+" dr P w'""n'bDa(r b).
In other words,
2
& 1 d iEm?
[d,z+rdr 3 ]wm 0, r=5. 4)

If we define w,, () and w,, ) as the restrictions of Wy
to (b,al and [0, b), respectively, then we have the continuity
equations




Wi, (@) (p+) = Wy, ® (b—) (5) 1—p & a 10w _w
4, @ 4 B (p = Bor B
dr (6+) dr Wim (b ), hat 72 r=q
so tha
@ (54) = L3y O (o), 2
dr* —_ 1w +1_£w @_ 1, (a) 13)
£, @ £ (o) - L rlag? ™ rd’" P27
—_— b+)— =—w, ' (b—) = —. @)
" dr mbD 2) @ i | B
The solution takes the form (with n = km) g r2 d P r—a
Wm(a) (r) = 4, 1"+ B, r"*?+ C,r "+ D, r "+, (©) Substituting (6) into (10) and (13), we see that A4,
W'D (r) = A, r"+ B, r"?, B,, C,, D, must satisfy
A=) n(n—-14,a" ) (14)
and the continuity equations become +(n+1D) n+2—v(n—2)]B, a™?
(4,—A',) "+ (B,—B',)b"+? N +U=»n(n+1C,a"
+Cpb "+ D, b2 =0 +(n=1DIn=2-v(n+21D,a " =0,
n(d,—A',)b"+(n+2) (B,— B',)b"2— nC, b~ "
—(n=2)D, b™"+* =0 (1=»)n*(n—1)A,,a"+ n(n+1) (n—4~vn) B, a"*?
n(n=1)(4,,~ 4" ) b"+(n+2) (n+1) (B, — B',,) b"*? —A- P+ Cpa"
+n(n+1)C, b~ "+ (n—2) (n—1)D,,b~"2 =0 —n(n=1) (n+4=vn)Q,a "2 = 0.
n(n=1) (n=2) (4, = 4'p) b" Since C,, and D,, are known already from (8) we can
+(n+2) (n+1)n(B,— B',) b"*? solve for A,, and B,
=n(n+1) (n+2)C,b"
n . PR - I _v)[ g_] . 8(14v) ]
= n(n=1)(n=2)D,,b~"*? = 3 87D 3+v (n=1)(1=»)
g 2
: n Pa? B" B
The solutions are B,am? =~ 87D 3+v (=) 7— n+1 } as)
1 P
(4,~A',)b" = — ———— =——, 8
m m n(n—1) 81;? » ) We rewrite the remaining solutions as
1 P, 2 n+2
_ R 7S > R S 3. _ Pa
(B B ¥ = ST D Cad™" = = 575 7 =
- 1 Pb P 2 n
. W o~ _ a B
Cmb w(n+1D) 8nD’ Dpa™ = g D
— 1 Pb —n+2
D n+2 —_—— Pa é
mb n(n—1) 8D A'pa" = Apa" + o
In addition, w,,(? must satisfy the conditions of zero B g™ = B grt?— Pa? "
moment and shear at r = g@. Now, using standard expres- m@ = Ima 87D n(n+l)’
sio
RS 2 5 Thus the solution to (1) has been obtained. It is given
Lapp|8w, JLdw, 1 87wy _ by using (15) and (16) in (6), and (6) in (2).
M, +v N )]
D 87 rar 2 96—,
50
& 1 d n?
— + — — —— = {
7 w,(a) +v drw,,,(a) 2 W la)| = 0; (10)
furthermore
1 Ll 9 |dw_w
DM’O 1-+) r 60[ rory 1y
1o 88w, 18w, 1 8w
D% ar[a Tyt e
and
1 11 0M, '
— — V = —_— — — c—r—
DV H 5277 5 . (12)
B [otw, Law, 1 8w
or{arr r or P2 902
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286 1) s3d035513, eondp Aojouyay pesuenpy zeg 19A 31dS / 0ZZ

3 —
N ftvar YN(xlO ) pP-p n, Bi, €5 <bi
rms
1 0 2.60 3.8
2 1 8.56 3.9 B = .3538
3 1 5.76 4.2 B = .645
1
6, 1 2.93 4.3 B = .681
1
7, 2 2.36 4,9 n = 1 6
B = 0 .737
€= .1183 .8817
¢ = 0 0
2
9, 5 3.76 5.0 n = 3 3 3
B = .2825 .7936 .7700
€ = .2309 .3637 L4054
¢ = 0 0 1.0472
1
12, 6 1.94 5.1 n = 3 3 3 3
B = .3151 .7662 .8257 .8257
€ = ,2783 L2843 .2187 .2187
¢ = 0 1.0472 .3497 .3497
1
15, 7 2.32 5.4 n = 3 3 3 3 3
B = .3192 .7765 .8412 .7765 .8412
€ = ,2833 .2046 .1538 .2046 .1538
¢ = 0 .7833 .2615 .7833 .2615
1
18, 9 1.89 5.5 n = 3 3 3 3 3 3
B = 4741 .3195 8171 .8536 .8171 .8536
€= .1625 .2071 1731 L1421 L1731 L1421
¢ = 0 1.0472 .7820 .2663 .7820 .2663
2
27, 14 1.65 5.7 n = 3 3 3 3 3 3 3 3 3
B = .2044 .8740 4777 .5555 .8787 .8574 .5555 .8787 .8574
€= 1152 L1049 L1347 .1162 .0955 .1110 L1162 .0955 .1110
¢ = 0 0 1.0472 .3399 4280 .8383 ~.3399 -.4280 -.8383
1
36, 9 1.63 6 n = 6 6 6 6 6 6
B = .2569 L5771 L5771 .8830 .8834 .8830
€= 1671 .1812 L1812 L1549 .1607 L1549
¢ = 0 .2649 .7823 .1703 .5236 .8769

TABLE 1
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1. The three kinds of point symmetric infinite grids. These
grids are shown with equal areas per point. As described in
the text, the triangular grid is the most efficient.

Eh®
D 12(1-v2)

XBL 823-8446

2. The geometry and notation for supporting a circular plate
on a single ring of support points. P is the applied force. In
the figure six support points are used.
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3. The support efficiency as a function of the ring radius for
points on a single ring. Cases with 2, 3, and 6 support points
are shown. More than 6 points is indistinguishable from 6
points. Note the dramatic improvement with increasing N,
and the great sensitivity of the efficiency with the normalized
radius 8.
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4. The region of Figure 3 near the minimum is expanded for
clarity. Note again the small difference between N = 6 and N
= infinity.




185 183 184

XBL 823-8447

5. The possible support topologies for an 18 point support.
Three fold reflection symmetry of the support system is
assumed in establishing the possible topologies. The nomen-
clature gives in the superscript the number of points on one
axis of symmetry and the subscript gives the number of
points on the other axis.
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L
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6. The optimal locations of support points are given for the
general support configurations shown. Note that the 401 case
has a negative force applied to the central point. The plots
are ordered in the sense of increasing efficiency.
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9. The optimal locations of support points for the general
support configurations shown.
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8. The optimal locations of support points for the general
support configurations shown.
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10. The optimal locations of support points for the general
support configurations shown.
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11. The optimal locations of support points for the general
support configurations shown.

|
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13. The optimal locations of support points for the general
support configurations shown.
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183

XBL 823-8589

12. Contour maps of the deflections for the support
configurations of Figure 11. The contour interval for each plot
is one half times the rms deflection of the surface from the
mean deflections . The heavy line is the mean deflection.
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14. The optimal locations of support points for the general
support configurations shown.
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15. The support efficiency as a function of the number of
support points. For each number the best result is given, and
the optimum for other topologies is also occasionally indi-
cated. The limiting value for each of the three infinite grids
(triangular, square, and hexagonal) is also given. The
efficiencies for optimized continuous rings are shown by the
dashed horizontal lines . As N becomes large the efficiency
of the best topology approaches that of a triangular grid.
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16. The efficiency per support point as a function of the
number of support points. The vertical scale is normalized to
the limiting efficiency, that of an infinite triangular grid. As
expected, the efficiency approaches the triangular grid as the
number of support points grows. Only the best optimum for
each number is shown. The limits set by each of the three
infinite grid systems are also indicated.
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17. Two different optimizations for the same topology are
shown. One was restricted to have the inner six peints at the
same radius. The rms deflections of these two rather
different optimizations are essentially identical. This example
indicates the difficulties in finding the true optimum.
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Al. The infinite triangular grid is shown. Points are labeled
with different symbols to show how this grid can be decom-
posed into two rectangular grids that can be analyzed and
superposed to give the deflections of the triangular grid.
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A2. The infinite hexagonal grid is shown, Points are labeled
with different symbols to show how this grid can be decom-
posed into four rectangular grids that can be analyzed and
Superposed to give the deflections for the hexagonal grid.




