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Abstract

'ùy'e describe the deflections of uniform-thickness plates
supported by discrete points and by continuous rings. The
calculations are based on the theory of deflections of thin
plates. In some cases the effect of shear on the deflections is
also included. The optimum locations of the support points
for a wide variety of simple geometries are given. The
deflections and methods for estimating the deflections for the
limiting case of a large number of support points are also
desc¡ibed. Since the slope errors induced in a mirror by its
support may be relevant to optical image quality, we describe
a method of relating the surface deflections to the surface
slopes, and hence the geometric optics image blur that results
from a support system. These results are particularly useful
for the support of very thin mirrors, where the optimum sup-
port is needed.

l. Introduction

One of the most challenging problems in the design and
construction of large telescopes is that of properly supporting
the primary mirror so that the large forces due to gravity do
not objectionably alter its shape. High quality telescopes typi-
cally require that the mirror deformarions be limited to some
small fraction of the wavelength of light that the telescope is
designed to use. For optical telescopes in particular, the
deflection tolerances are sufficiently small that great care must
be taken in the mirror support if these tolerances are to be
met.

As a telescope points to different zenith angles the direc-
tion of gravity relative to the primary mirror changes. As a
result of this, a mirror support system must be able to carry
this force both in the axial direction (normal ro the mirror
surface) and in a radial direction (parallel to the mirror sur-
face). These two components typically have different support
systems, and it is often the case tha! the axial support is the
more delicate and difficult support problem. For large mirrors
this axial support is usually provided by some distribution of
forces applied along the back side of the mirror, or at some
points located along the center of gravity of the mirror. The
radial support system is similar in form, typically being a sys-
tem of forces applied either around the periphery of the
mirror, or at discrete points located along the midplane of the
mirror. In this paper we will not deal explicitly with the prob-
lems of radial support, but will only address the nature of
axial supports. This general problem has been of great
interest in the past, and a detailed srudy of axial support sys-
tems in theory and practice was made by Couder (1931).
More recently, the entire field of the support and testing of
astronomical mirrors was reviewed in a symposium (Crawford
et al., 1968). Several specific mirror supports are also
described by Pearson (1980).

The largest telescopes have used a discrete set of point
supports for their axial support. The Soviet 6m telescope has
60 back supports, while the Hale 200" (5m) has 36 back sup-
ports, and smaller telescopes such as the Lick 3m have 18
back strpport points. These points of support are points at
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which specifred forces are applied, often with counterweight
systems. Other methods of applying these forces include air
pads and whifrletree systems. In other cases, back support
has been achieved by using ring supports with, for example,
fluid filled tubes to achieve a uniform distribution of force
along the circumferential length of the tubes.

Although axial supports for telescope mirrors have been
dealt with in some detail by previous authors and telescope
designers, the current desire to build extremely thin and large
mirrors makes the subject of great interest. General design
guidelines for possible supports of these very flexible mirrors
will be most useful.

In addition, the recent interest in telescope mirrors that
are segmented or composed of multiple telescope primaries,
makes the uniformity of focal length a new and critical issue.
With the support of only a single mirror concern over the
accurate control of the radius of curvature of the mirror is
minimal. In this case, changes in the focal length of the mir-
ror due to imperfections in the support only require a
refocusing of the telescope, something which is often required
as a result of thermal effects in any case. For telescopes that
have primaries with multiple mirror components, the focal
lengths of the mirrors should either not change at all, or at
least all change together. Particularly for segmented pri-
maries, where one may attempt to accommodate both obser-
vations in the visible (seeing timited) and infrared (diffraction
limited) regimes, all segments must have the same focal
length to very high accuracy. Of course for the support of
flats the proper control over the curvature is essential as well.

In section 2 we will develop some scaling laws and other
semiquantitative rules to aid in the conceptual design of axial
support systems. In keeping with our conceÍn over focal
length, we will consider any plate deformations that alter the
focal length as detrimental. A variety of examples of optim-
ized support systems will also be given as further aid in the
design of supports. Because the goals of this work are rather
general, simple idealized cases are discussed, rather than
specific realistic cases that must be dealt with in the detailed
design of a specific support system. In this spirit we will typi-
cally ignore the effects of central holes, variable mirror thick-
ness, shell effects, and the effects of shear in mirror deforma-
tion. Section 2 describes general scaling laws that apply to the
deformation of thin plates. Section 3 discusses the deflection
of plates that are infinite in extent. These have no edge
effects and thus represent the limiting case of a mirror that is
supported at a great many points. Section 4 gives for a
variety of cases the optimized support configurations for cir-
cular plates. These cover both point supports and continuous
ring supports. In the final section we briefly address the issue
of support tolerances and sensitivity

In keeping with the optical motivation for these studies,
we evaluate the effect on the image quality of imperfections
in the mirror support. There are two common ways of
evaluating mirror distortions. l) Using the geometric optics
approximation the image blur is evaluated from slope errors
in the mirror surface. 2) The other extreme characterizes the
mirror surface by the root mean square deviation (rms) of
the mirror from its desired shape, and thus characterizes the
image by an rms wavefront error.



This approach assumes that the wavefront error can be
characterized by a single number and that this determines the
optical effects. Although this is an excellent approximation
when the wavefront errors are small compared to the
wavelength of light, and the geometric limit is a Sood approxi-
mation when the wavefront errors âre large compared to the
wavelength of light, the intermediate øse requires the full
and complex application of the physical theory of light. Some
tools for understanding this intermediate region are contained
in our report to this conference "The Effects of Mirror Seg-
mentation on Telescope Image Quality (Mast et al.)." Con-
ceivably the "optimumn support support will depend on which
approach one chooses for analyzing image blur, but as we
show in the next section, a fairly quantitative relation can be
made between rms surface error and maximum slope errors,
so both approaches should give essentially identical results.
rrVe typically will optimize on the rms surface deviation from
the mean deflection rathe¡ than the slope errors. The peak-
to-valley error is also closely related to the rms surface error.
It is commonly the case that the peak-to-valley error is about
five times the rms, and hence they are essentially equivalent.
However, since the peak-to-valley only gives information
from two extrelne points, whereas the rms is averaged over
the entire surface. the rms is normally the more useful sur-
face characterization.

2. Scaiing Laws

In the theo¡y of thin plates where only flexural bending
contributes to the plate deflection and shear effects are
ignored, deflections of circular plates take the form:

In this form, once 7¡ is known, the deflection for a mirror
of any size can be found.

The virtue of this form of the deflection law is that the
parameter y¡¡ becomes a fixed constant for an optimized sup-
port configuration, at least in the limit of large N. For small
values of N there will be noticeable edge effects that will
make 7¡ a function of the number of support points. As the
number of support points increases /¡y will decrease to an
asymptotic limit y-. Improperly optimized support systems
will of course have a larger y than otherwise. Recognizing
that 7 is a measure of the efficiency of a given support
coofiguration, we call y the support point efficiency.

We will typically ignore the effects of shear. This eases
the calculations and allows us to ignore the effects of plate
thickness, except in D. However, a rough estimate of the
additional deflections that will result from the inclusion of the
effects of shear can be found by use of the formula

r t
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where u is an effective length between support points, and a
is a constant. If one deflnes u from the relation

Nru ;¿ :  A  (6 )

then for a variety of cases numerically evaluated one obtains
an approximate value for a of o : 2. Note that this rough
formula only applies to plates that have optimized supports.
A non-optimized support may have a much larger bending
deflection but essentially the same shear deflection, and the
inclusion of shear effects then results in a smaller change than
indicated. We emphasize that the effects of shear scale
according to the thickness-to-support-point span ratio, rather
than according to the thickness-to-plate-radius ratio.

As mentioned earlier, the optic¿l effects due to mirror
deflections are often estimated using surface slopes rather
than the ¡ms deviation of the surface from its desired shape.
The slope, the rms deflection, and the effective length must
have at least a rough relationship,

Sn õr^r/ u

This gives the scaling relation of

c - a 1 4.¡uz l= 14=yn (8)ù  -  8Nt \ I : /  t? rñ , '
One can test these relations in a variety of cases to flnd a
value for the parameter g. We have found for a surprising
variety of cases that, for systems optimized to give the
minimum rms deviation from the desired surface, the max-
imum slope can be found (within-20V0) by using

g9:9v ¡,t (9)

The maximum image diameter is four times the maximum
slope. Because of this well defined slope vs displacement rela-
tion, and because we are particularly interested in deflections
that are sufficiently small to allow diffraction limited perfor-
mance, we will characterize the surface by its rms deviation
from the ideal one for the rest of the paper. This means that
the average deflection on a given support system has been
removed. We include all other effects including changes in
the overall radius of curvature (focus).

3. Inflnite Plates

Real finite plates have a variety of edge effects that tend
to increase the plate deflections and appreciably complicate
the analysis of their deflection. If a plate is simply supported

^  : k q a 4-rms " D
(1 )

Ìvnere

q - the applied force per unit area
a - the plate radius.
O - nnjll2(1-vz), the flexural rigidity,
E : the material elastic modulus.
v - the material Poissons ratio,
h - the plate thickness, and
k is a parameter that depends on the nature of the

support configuration.

For self-weight deflections this gives the well known scaling
law that the deflections vary as:

ô-4 e)
h¿

For non-circular plates a generalized form of this relation is
more useful.

ô,,": t4,* 4, (3)'  D  h 2 '
where A is the plate area and (, the support efficiency, is a
dimensionless parameter that depends on the support
configuration. This form is useful for estimating for example
the deflections of hexagonal plates, a shape desired in seg-
mented mirrors.

When one considers the deflection with N support
points, it is evident that a pertinent parameter is the area per
support point, rather than the area itself. Thus one can couch
the rms deflection of a plate supported by N points in the fol-
lowing form:

ô.^: tNfitftlz (4)

(7)

,i;
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at many points, the deflections near a given support point will
be dominated by the locations of the neighboring support
points and will be only weakly effected by the location and
shape of the free edge of the plate. For these reasons'
infinite plates are worth studying. We also expect that no
frnite plate can be supported as efficiently as an infinite plate,
thus, the efficiency coeñcient for an infinite plate will set a
lower bound on the emciency coefficient of any point support
system for a frnite plate. Finally, the study of infinite plates
cån serve as a useful guide for the optimal topology of sup-
port point locations for frnite plates.

If we restrict ourselves to point support grids that are
identical for all support points,, only three topologies are pos-
sible. These are shown in Figure I and are the ones with
three neighboring points (hexagonal), with four neighboring
points (square), and one with six neighboring points (triangu-
iar). Because these support topologies are different, we
expect that their efficiency coefficients will differ as well.

The deflections of an infinite plate supported by rec-
tangular rows of support posts is a classic problem in plate
theory. A discussion of this problem and its solution are
given by Timoshenko (1959). This solution can be readily
applied to the square grid case.

The deflections of the plate on triangular and hexagonal
support point grids can also be readily found' Following an
idea by Medwadowski (1981), we consider the deflections of a
plate supported by a rectangular grid of support points and
use the principle of linear superposition to flnd the triangular
and hexagonal case deflections. Details of this derivation, and
the results are given in Appendix A. The results for these
grids can be summarized by determining 7 as defined in
Equation 4. We find

^l hexasonal : 2'36 x 10{

I square - l '33 x 10-r
^f triansutar: 1'19 x 10-r

Note that these results are independent of Poissons ratio v.
Not surprisingly, the triangular grid is the most efficient,

and the hexagonal grid is decidedly the worst' It follows from
this that the triangular grid is the basic topological pattern that
should be used as a starting point in the optimization of sup-
port point forces and locations for finite plates.

4. Circular Plates

We now turn to the most common shape for primary
mirrors, the circle. As mentioned before, we will not expli-
citly discuss annular plates or variable thickness plates, or
include the effects of shear or the curvature of the plate.
These effects should be included in any detailed analysis of a
specifrc system. We will first discuss the deflections that
result from point supports. We then evaluate deflections due
to ring supports which for some configurations form a limit-
ing case of point supports.

In analyzing and optimizing support systems in general,
we strongly emphasize that the supports provide specified
forces, but do not by themselves define the position of the
mirror. In the case of N support points, three of these points
can be specified to define the rigid body motion of the mirror,
but the other support points should in practice be allowed to
float in position and only provide the specified force. It fol'
lows from this that the deflections at the support points are
not required to be zero for the overall optimized support.
This is important in developing a physical-intuition for these
systems and differs markedly from the intuition one has of
conventional supports of plates on fixed points.
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To find the deflections of a circular plate supported by a
series of points we will use the principle of superposition and
divide thè support points up into groups, each group contain-
ing k points únifortirtv spacèd around a circle of a fixed radius
as-shown in Figure 2. The derivation for the deflections due
tõ a single sucli group is given in Appendix B. The deflection
has the form

w(p,o) :  iw^$)cos(kmg) ( lo)
m-0

where the formulae for w^(p) are given in Appendix B' To
find the deflections from ihe full support system' we simply
udd th. deflections from each group, weighting the deflections
by the fraction of the load being carried by that group' Thus

w(p,Ð :  f  e ¡w¡( n¡,ß ¡ ,p,9-þ ) ,
i - I

(12)

where

w(p.0) - Plate deflection
n - number of groups or rings
e, : the fractional load carried by i't ring

E t ' :  I
)rrj : plate deflections with a single ring of point support:
¿, : number of support points on the irn ring

B¡ : radius of the l¡n ring
é¡ : azimuttral offset of points on ifi ring

A given support system is optimized by varying the forces,
radii, and rotation angles of each group to minimize the rms
defleition. For the õases described below the optimization
was made by numerically evaluating the rms deflection with a
computer, and using a standard optimizing package for non'
lineaì functions. In addition, some of these results have been
independently checked with a finite element analysis program'
(Tayìor, Asfura, and Budiansky, 1982)

A single group of support points gives an rms deflection
that variesïitñ ttré raOius of the ring and with the number of
support points on the ring. The rms deflection (or rather the
tupport èffñciency) as a function of these two parameters is
shoin in Figure 3. Note that as the radius of the ring
approaches one, and the number of support,points becomes
tárge, ttrat the deflections approach those of a plate simply
suõported along its rim' It is interesting that six points is
atreä¿y a uery ðtose approximation to a continuous ring' As
the raãius of the ring approaches zero, the deflections become
those of a plate supforié¿ Uy a single point at its center' The
deflections of the piate supported by a ring at the outer edge
define a kind of "àatural" scale for the deflections. The rms
deflection near the optimum is shown in Figure 4 and is a fac-
tor of about 25 smaller than the natural scale. This dramatic
improvement is a reflection of the fact that deflections vary as
a4'. This also leads to great sensitivity to support errors'
Except very near the minimum itself' the rms varies essen'
tially linearly with the radius of the support ring.

When one analyzes supports with multiple rings of
points a variety of point topologies become possible' [n other
words, specifying the number of support points does not pro'
vide enough information to readily optimize the support sys-
tem. If oñe considers the mathematical charaater of the rms
deflection function for a specified number of points, the func-
tion will have multiple extrema in general. These extrema
typically exhibit different symmetries, and thus the topologies
fôì eaitr extrema should be found and then each used as a
starting point for the optimization.

The problem of optimizing the positions and forces of N
ooints has 3N variables and 3 constraints ( net force : l, net
-o-ents : 0). In addition rotation of the coordinate grid



about the plate center has no effect. Thus we seek theminimum value of a function in a 3N-4 dimensional space.Since this can be a very large space, and thË-ïunction is non_Iinear in the variables, the matLematical difficutties ... errãi_mous. We will reduce..the difñculty bV adding symmeÍy con_ditions^whenever possible. For most cases oi int"r.st, 
" 

lvï_t9q of support with reflection symmetry ãUout ¡ ä*"r'i.desired. This reduces the problem to Zñtl-_ 1 variaUlei.We now divide. rhis space in_io regions wiitr'¿istinct ,yãããöproperties relalive to the reflectioì axes. Theie can be exhi-bited on one sixth of rhe circular pl"te. Àñìxumple of thisdecomposirion for lS.points is shown ¡n ¡igure S. 
'ftre 

noìã_tion uses the superscripr for the numbei oi"point, on the firstsymmetry axis, the subscript for the second ;ymmetry axis.
_ Some topologies are obviously not candidates forefficient suppoit syitems. otlers a¡å, .nã-trr.r" have beenoptimized with the computer. The number'of local mrnrrnufor each topology is belþved to Ue veiv smaä, probably onein many cases. When multiple minimu eilsi, 

-*" 
u." nor cer_tain thar the lowest minimum has been founã, Uut expect thatthis is the case.

We have found. thar the topologies that produce thelowest extrema (smallesr rms deflèctiö)-.iä-ìr,òr. .ppr*i_matlng a triangula¡ grid, as we would expect from the discus-sion on- infinite plates. As the number óf-support pointsgrows, the number of possible topologies groru, ., well, andfor large numbers of supporr points s-electäi tt. U"rt täpol-ogy may be a difficult task. We have foünà in fact ihatseve¡al topologies may- have essentially identical ,uppãiiefficiencies. Particularly for circular p-lãiËi'"nJlo-. values ofN, the triangular grid may not ahvays proviãe an obviousnatural ropology. For example,.fo¡ N : 9, thelriangulãr LriOis unsuitable and the support is quite inemc¡ent. iVe tñãw
llrat n-o support sy-stem càn have'an .m¿i"r;t ractor uéiierthan that of the infinite triangular griO. ftrui,'in practice theeffciency of a given optimiz;d topäloiy ä-i,; compared rothe triangular grid and .n uppé, bã"rd"; the possible
improvement by choosing anoth;; topoloÀicarr'Ue assessed.

A variety of supports have been optimized. For thesecases we have assumed v - 0.25. Thè simplest cases aÍeshown in Figure 6, indicating ttre numuei anã iåcat¡on or trresupport points, and the alrernate topologies considered. Cón_tour plo_ts of the plare deflections foi t¡õse ..s.j.re shown in
frS,I9./. .rhe actual optimum parameters are given in Tabler rvntcn gtves the number of support points, the number of
!1t:T:t.* oprimized, the. ring radii, the forces for e.ò¡ ,lngoI supports, the azimuthal rotation for each ring of suppoiislth_e achieved efficiency from which ttre rms åËflectio;'for;
gl:: 1*.? can readity þe fouqd using Equation q), unO-i¡ðrauo or tne peak-to-valley deflection to the rms deflection.The efficiency coefficients î*;¿;;;;jr;pl'oti.ä'in Figures I 5
1n^d .16 along with the efficiency funciions for the three
:l^r1T,:"ll"r. supporr geometries. We now give brief descrip-uons ol the support systems.

. The-single support point system has no parameters to beoptimized, and has rms defleðtion, ,orn. zii-imes greatãithan rhe limit suggested by the innn¡æ iiiangular grid. Thetwo. point sysrem has a radius that can Ue uãiËã, ãnO whãnoptimized,..this system gives an effic¡ency iunciiä tnat is 7.2trmes the limit. The three point support is the most commonof .supportsystems, and its optimum'oc."*äiti,å well knownradius of ß : 0.645. Ir is iomewhat s"rp¡ri"s (anà'ålõ':
pointing) rhat the best rhree point ãmcienli,'li:'?.A ti..r-trî"limit Continuing on the singie ring d;;;; see that a six
Î".'i::lT:T 

':,_op_ti-ir:9. for B : 0.ó83 and has an efficiencyz.r umes rne ltmrt. Adding more points to a single ring nowbecomes less efficient than creating n"* iingî of süppãrtpoints. The simplest addition is a neú ring withîero radius. a

point at the center. 
lhi¡ forln of seven point support systemis notice3bly more efficienr than the ,if iäììrt system, as isseen in Figure 16. This naturally raises tnl-lúestion whether

I six point system with one poini .t tt" 
"óntJi 

surrounded bynve points can be more efficient than tire Cónventionat s¡ngläring six point sysrem. .Optimilatiãn i.r..l, ti"t the single 6point ring is better by about 130/0.

-,_^ lll_jhr.e ring systems are needed when we move ronrne pornt supports. Here^sym_metry allows the rwo iãpãlå_gies shown in Ficure - 
g. - Both 

' 
nãu"'"uirost identicalefficiencies. Note tñat t¡e nine 

'po¡nL,r,år, 
have muchlower efficiency than rne slx or seven point supports. It canbe explained as due to.rhe fact that ,¿;m;i;;;'riungutar 

gridscannot be made with nine points.
A complete riangutar grid can be made with 12 pointsand the resulrs for the besi topologi aiä-gluen in Table l.The topotosies and locarions ôf qf", ãntiüirço points areshown in Figure 9. The best t*o, 12¡l ̂ írä'tT¿, i,ãu. èrsrn_tially the same efficiency. As _ expecteJ, 

-it 

"-t.¡.ngular 
gridgives superior performance., with an em"iLnåi.uout 1.6 timesworse rhan the infinite. rriangular griO. OpiimizeO 15 poinisystems are shown in Figure. 10. Topotogieå tS,tån¿ isolîiËabout equal, but since no triangular iri¿îãnngurution is pos_sible, the efûciency is poor.

. ìVfoving up to the,next complete triangular grid we findthe 
-18.point 

system (we omit it. .rnifai-pìlnt). Severaltopotogies give equivalent efrciencies (t-gg; 1E";;d lgrr');indicating that strict triangular grl¿ topofoiìe.-"r. no, .rr"n-tial, and rhe circular nature oftiri ;úËË;;r. importanr.
l-1_v_erat optimized topologies ,r"-r¡J*i-in Éiäìr. lr. Con-tour maps of the deflections..are shown in Fijui. lZ. À.tuãilv
!?-Tll:t¡ne the.grid byjd¿ing the lgrh polni'rt the centergves an even higher efficiency as is seen in Figures 15 andI ô .

As we increase the number of support points, it probablybecomes less importanr to choose 
";ñ'b;;;'J';upporr 

pointsconsisrenr_with triangular grids. The n.if iriunöunr grid sys_
1"T.þ.r 27. support points,. with an 

"ptir*rn-åfr.t"nõy-ãuãutL¿l times that of the infinite triangular Àii¿. Several optim_ized topoloeies are shorvq in-Ed*"'iã: 
-euite 

similarefficiencies are found for t t6 ana ¿tf .
. We complete our examples of disc¡ete supports with a 36point support sysrem. The'200" t.l.ììopãïr'iiì.ry has a 36point support system, and the propoi.o r,r'pïãit system forthe indivídual mirror segment, oïtli" uni"-;r-r'irü of CaliforniaT^en Ìvleter Telescope tr.s ttris numue, ãirrîiäí,r. There are28 different.topologies that satisfy-ìhe rt i.O'!v-*.try condi_t¡ons. The best candidates have 

-been 
ôpti.¡iËä,.n0 rhe sup-port point^locations are shown in Figure, la. Ãiìsual, severalsystems ( 36d, 36i, 36j) are equa[] efficieni.-"fne optimized

ppporr efficiency'is on-ly auoui +õã¡o 
-*årrî'ìr,* 

rhat of theinfinite triangular grid.
When so many support points are used, the system is socomplex thar a variety of similar support;o;ii;irs gives simi_lar results. For example,_if one assumeì that all 36 pointsmust lie on three rings of 6,.12, and iS-pó-i";, one greailyreduces the number of variablei, U"t tr,Jï"åi'optimum isonty about 150/o worse than the fú,ty ;pi;;i;;d system. Thisdoes nor mean that one can actr¡eíe 

-itris-'iÃ-"ãr"ti.uf 
perfor_mance without great care. .On the .ontrrry, 

-* 
Lne goes tomore and more supports, the care an¿ oàtäil ln tr¡e ãn"rysiirequired ro achieve the optimum go., up áiá_iiicaily. euiteminor changes in the parameters èan lea'd to largè changes inthe deflecrions. Considered i" tf,"ärìrr-.ilävïàver, it ooesseem to be the case rhat. the multiple ãi..^ion.f space inwhich one searches for the minimïm does ffi; rather flat"valleys". where more than one _set of p"rumete.s will giverather similar rms deflecrions. eìen-soi-itr'îãlr, of rhese
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"valleys" are exceedingly steep, and great care is needed to
achieve the performance indicated here.

Based on our experience with the supports analyzed
here, it appears likely that if one goes to even more support
points, concentric rings of point supports are an adequate
approximation to the ideal, but more complex optimum
geometry. The most efficient use of support points in this
situation is likely to be one with the number of supports per
ring increasing outwards in the series 6, 12, 18, 24, etc. As
noted before, the degree to which one has optimized the use
of the support poínts can be checked by comparing the
efficiency coefÊcient against that of an infinite triangular grid.
For a well-designed system, as the number of support points
becomes large, the edge effects become negligible, and the
efficiency coefficient should equal that of the infinite plate.

Another way to evaluate the quality of the point support
systems is to compare them with special cases having an
infinite number of support points on each ring. Thus.we turn
to the analysis of continuous ring supports. These are notice-
ably simpler to analyze and optimize than discrete point sup-
ports, since the number of parameters for optimization is
imaller and the actual analytic expressions for the deflections
are substantially simpler. One again uses the principle of
superposition, and uses the formula for a ring support as
given in Appendix B. Since the number of support points is
not defined, \r'e return to the notation of Equation 3 and
study the parameter f as a function of the number and radii
of the ring supports. As with points, we do not insist that the
deflections vanish at the rings but rather let the deflections at
the rings be determined from the elastic equations governing
the plate deflections.

We have optimized the radius and force for each ring,
and the results are shown in Figure 15. We have also
included the theoretical limits for the three infinite plate
cases, and some of the optimized point support systems in
this figure.

It is interesting to use this graph to compare a ring
system's efficiency against the point support system
efficiencies. For example, notice that the deflection achiev-
able from three continuous rings is only slightly better than
that achieved with three "¡ings" of discrete support points as
seen in the 36 point support system. This provides
confirmation for the idea that adding more points to a given
ring is not productive beyond a certain point, and that one
benefits much more by adding new rings of support points.

The support point efficiency is shown in Figure 16. As
expected, as the number of support points grows, the
efficiency approaches that of a triangular grid.

5. Sensitivity of Deflections to Support Perturbations

In the preceding discussion, we have given the theoreti-
cal limits for plate deflections that can be achieved. In prac-
tice, various approximations, simplifrcations' and fabrication
or alignment errors will degrade the performance of the sup-
port system. Particularly when the number of supports is
large, the necessary superposition of the deflections associated
with each support point that will allow almost perfect cancella-
tions of these deflections becomes a very delicate procedure.

When one is supporting a single curved mirror, main-
taining the exact radius of curvature is not always critical, and
in this case, some relaxation of the tolerances is often possi-
ble, since the flrst order effect introduced by analysis errors,
etc., is typically a change in the curvature of the plate. One is
fortunate when this can be focused out. For cases where an
optical flat is being supported,, or when a series of segments

are being supported that must have identical radii of curva-
ture, any error in the mirror shape becomes critical.

If we assume that the optimum support is known' the
effect of displacements of the supports fin the plane o[ the
mirror) from their optimum location can be understood by
the fotlowing. The displacement of a point is equivalent to
the support force being in the correct position plus a moment
being applied at the support point with a size equal to the pro-
duct-of ih" fot." at that point times the displacement of the
support point. The superposition of the resulting deflections
from each of the support point errors gives the additional sur-
face error introduced by the support deflections.

Perturbations of support positions and forces must
satisfy the constraints of overall equilibrium; the sum of the
forces equals the weight of the mir¡or, and the net moments
about the mirror center must vanish'

The true optimization of a support system is an
extremely painstaking procedure. However, we conjecture on
the basis òf several numerical èxperiments, that the exact
support positions can be adjusted over a small range witlout
gròisty increasing the deflections, as long as one carefully
õptimizes the fories applied at those points. Fortunately, the
mathematical optimization of the forces is a linear problem,
hence a unique optimum exists. It can be easily found if the
deflection foi each group of support points (evaluated as sole
supports) is known. As indicated earlier, the deflections at
thè'support points will not necessarily vanish, but will follow
from tiù análysis. An example showing two configurations of
the same topology is shown in Figure 17. These have essen-
tially identical efficiencies.

We have described the general concepts, general scaling
laws, and given some specific examples 0nfinite plates and
circular pÈtes) for supporting thin plates on a number
discrete points. These descriptions can serv-e as the basis for
beginning the design of support systems for thin telescope
miirors. 

-In 
addition they provide a basis for evaluating the

relative effÊciency of a given system. For any real mirror sup-
port system, an analysis that includes the detailed shape
inon-circular geometry, central holes, etc.) and the curvature
is essential. A careful examination of tolerances, although
difficult, is also invaluable.
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AÞPendix A

Deflections of Semi-Infinite Plates
Supported on ManY SuPPort Points

The question of efficiency of support of a large plate can

u" uO¿iãtt-"0 W àetermining the root mean square deviation

;i tdJ;fÈ¿tiãn ftorn the ñreun deflection' since the plates

;";;;;lõ-b. u".v large, with manv support points' edge

;ffeJiJä; ilìãgtecte¿. õoísequentlv, the best^support dis'

;,Ñil-;¡;óin-is will be amóng the class of geometries

where all support points look alike'

There are three geometries that are possible' If we con-

siOer ïiiùn point, itian have either 3, 4' o¡ 6 nearest neigh-

Ë.iil ñi"tt. 
-Ñi 

ottrei ãistribution of points will have the

Jimriöli;t all points took atike' These three topologies

are shown in Figure l.

'fVe now wish to calculate the deflections of a plate sup-

ported iv- each-ãf thtt. three support types' Since we aÍe
'ioi"."rt"O 

in the support efficiency, we must arrange the.sup'

ö;îö;il;tð1ñ"f int-.iea Canie¿ bv each support point is

ltté r"'*" ii all three cases' ln this way, we cån directly com-

pare the deflections.
The deflections of a rectangular grid of.support-points

"itft 
tp..itgt ïi- ä .n¿ å are dJscriueã bv Timoshenko and

-":n;i;ü:ir;åeãt 
tlssõl' to the deflections.for the case of

four neigh-boring support points can be readily found'

Drectorstr(a,b;x,y) : 
#r- +)2 

+ Ao

1-¡mlz"orWt
_  oa3b  S  

'  - '  
a

' 
2n3 D ^-?1,t.. n3sinhc.tanha.

t  . - - - .  I

I t rnno -) m¡ t rin¡ mTJ-(c'*tanhc ) cosn@l
l \ u t t " * m ' a a " ' a l
where

.  o å å  s  |  /  a ' * t a n h a
As-- :T L 

-7\a^--=-- '
" Zt" D ^_T¡.t... r¡l 

" tann'dm

and
m r b

a ^ -  T
Setting 4 - ä gives the square grid case'

Thedef lect ionsfor thesixpointcas.e(atr iangulargr id)
can Uï'iounO by using the principle of superposition'- An

;Ëñ ìoiuìion'for tiis pròblem ìvas. .obtained bv-S' J'

i,r"?¡"îoãirii 
- 
ü sb 1) utïng irt. superposition of two difrerent

;ffi"ilü' ;;ú;t.ti";t' we- prèsent, here a somewhat

íiäil* JJ"rion b-ased on the sãme idea: Consider the

geometry snown ln {eure A1'^ We can *:rr1"-th" deflections

ã. ir,. ,ú* of the deflótions of a rectangular grid of supports

äirJtr,Jãånã.tiðns of a displaced recrangular grid of supports.

If we assume the spacing of the triangr¡lar grid is ä' and

assume the rectangular-lrid hãs a spacing of a and ö' we can

write the rectangular grid deflections as

Drr*ongt"(a,b;x,Y) with a - Jîu,

The triangular grid will then give deflections of
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D,rions!"( b, x, Ð : 
I 

or"rr*t"( a, bix,t)
I

* lD,"r,oner"(a,b;x 
- 

i,, 
- 

*r.

. The t!1ee noin! supporr system can be handled in a simi_
rar way. ttgure AZ shows the hexagonal grid of supports.
Assuming the point separation is ã, onã ãn write the
deflections as the sum. of fgur ãirpf"..¿ 

- 
rectangular

deflections as is indicated in the figure. 'iV" ifr.n obtain for
the hexagonal grid, deflections of

Dhuoson ( b; x, Ð : 
IIo,,,,*¡"(a,B; x, y)

+ Dr"r,onglr(o,A;*-ll - 
$)

+ D r"rto ns r, (a, B; x- y, y) * D rrr* *¡" (a, A,.- !,, 
- 

lll

Appendix B

Defìections of a Circular plate on a Ring of point Supports
The deflections of thin, constant thickness plates are ofgreat,interest in optical s.upport systems. Many problems canoe solved by the appropriate superpositions of soiutions of thecase ot_ a crrcular plate axially supported by a single concentric

Sins of point supports (as shoùà ¡n F¡dure-ã)l- we ¿erivìhere the solution to this problem

__ Assume a uniformly loaded plate of radius ¿ andstiffness D, with total load 
",,is 

suipoitgã-ul-i point sup_porrs located at r - b (- ß a) ana' 
'0 

-2 jt¡l tc, j : ¡; 
-...7.

The deflection w(r,0) is governed by

Dyaw: - 4* 4f a( ' :¿r , [r_+1. q)
t a 2  k í i ,  á  " t "  k l

The Fourier series for É tfr- +l is of the form
i - t  t  / c J

where

a : 3 b ,  Ê : ß 8 ,  a n d

Q n æ

+ + E a^coskm9,
^ t :  - b .

Note that for these cases, the areas per point are:

At iorgle :

. ¿ :" square

rms

,  . . / 3  , 7âhexagon: tT t-,

We write the solution in the form

¡ :  - !  t l t z-  , D . N '

where _ø - the applied pressure on the plate,
D" - the modulus of rigidiry otitré pUie,

l: 
- the plate area per support point.

We_ can define ô as either the peak deflection, the mean
deflection, or the root mean square deviation oi nb ¿en..tion
from the mean. Fo¡ each of ihese we ..n õo*pãr, the rela-
lXt, 

fti:l.ies 
^of the. three confi_gurations- üãïu", õl , 

'[*

Lv') aÍe grven fbr each of the definitions and configurations
in the following table.

with

"^- +É,'['þ-Tl**^,*-
hence the loading is

- \*$atr-al*  P ô(r :á)  i -  cos*me.7ra" ¿ltD û b .ar-
Assume the deflection has the form

_ æ
w\r,0):  f ,  4(r)  coskmï, e)

m:0
where rir¡ is governed by
.  . l  t  t  ì l ìL  d t  r t r  d t  r þ l l l _ _  P = + å ¡ ( r _ ¿ ) ,
;  d, l '  d , l ;  d, l '  d ,  JJJ 

-  -  
l¿rç¡ t

i.e., w¡.is ju-st the deflection of a plate supported on a ring ofradius á. We can obtain w6 by superposing tne ãeflectioni ãi
:lTf]I :gp"fed.ptates thãt are uniformli loadãd and ring-loaoeo, wtth total loads equal and opposite, to obtain

k
17f,,

62

(3)

p >  p .

For m2 1, we have

l ¿  I  d  È , , ? 1 2  p
Iof "  ,-ã-Tl " ' :  hõG-Ð'
In other words,

[ æ , r  d  t t ^ 2 1 2
l . . -+
l d l  r d r  ¿  |

If we define w-(o) ang ry^$.) ̂ , the resrrictions of w-
ø (b,al and [0, å),'iespectivelíl tn.o *ã i,"u. irrL continuiry
equations
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\
'.1

(13 )

so that

l+l

(5)wm"
d

- - r
ar
&
¿P
ê-ã
ar

{ a )  ( 6 . l )  :

o-G) 16+¡

w^(Ð (b-) ,

: fiw^$) Ø-)'
w^(ù {b+) : 

#w^(b) 
(b-),

w^(ò (b+)- 
*n^r, 

tt-l : -1.

The solution takes the form (with n : km)
n^G) (r)  :  A^rì  + B^r '+2 + cman + D^r-n+2, (6)

w^(Ð (ò  :  A '  , r '+  B '^ rn+z ,

and the continuity equations become

(A^- A'  , )  bn + (Bn- B'^) 6n+z 0)
+  C^b- '+  D^b-n+2 :0

n(A. -  A '^ )  bn  +  (n+Ð (B^-  B ' , )  6n+2 -  nC^b- ,
- (n-2) D^b-n+2 - g

nb- l )  (A^-  A '  ̂ )  bn  +  (n+Ð G+l )  G^  B '  ̂ )  6n+z
*  n ( n * 7 )  C ^ b - n  +  ( n - 2 )  ( n - l )  D ^ b - ' + z  :  g

n ( n - I )  ( n - 2 )  ( A , -  A ' ^ )  b '
+  G+Ð ( ¡ t  +  1 )  n (B^-  B '^ )  6n+z
-  n ( n 1 1 )  ( z  + 2 )  C ^ b - '

-  n ( n - Ð  ( n - 2 ) D ^ 6 - n + 2 :  
n O L

The solutions are

!"r"'l

(B^-B '^ )6n+2:  
# { * ,

a  h -n : -  |  Pb2
- m "  

n ( n * l )  8 ¡  D '
1 Pb2D^6-'--:ff i f f i

In addition, ur(o) must satisfy the conditions of zero
moment and shear at r - a. Now, using standard expres-
sions.

[ ^ r  ( .  - 1  ì ' l

La.: l4*,1!9s*+.È+ll : o. (e)
D lð l  I  r  ör  I  ð0¿ l l , -o

so
æ  , \ . l t . a  I  I

fr w^G) *,1: ftw^G) - I "^{a)l : o; (ro)
furthermore

*r,,: (r-,,+ #[*- +ì,

(8)

06)

It is given

0 l )

-f,o,:'fi'[#.+#. ,#1,
and

-f,v,- It- *n,*+f¡ll,-a (,2)
:[*[#.+#. i#l

+(1-v) #lr#-Ëll,:.
¿
¿P

n^(ò+ l4n^ ' " ' - 4n^<o t
r  d r " ^

- *(1-,' [å #n^,",- #ll r,t
Substituting (6) into (10) and (13), we see that 1.,

Bn, Cm, D. must satisfy
(14)( 1 - z )  n ( n - 1 ) A ^ a

* ( n + D l, n + 2 - v ( n - 2)l B, a'+2

+ ( 1 - z )  n G l l ) C ^ a - n

+ G -  1 )  [ ¿ -  2 - v G + 2 ) ] D ^ o - n + 2 :  g ,

( l  -  v )  n z ( n - l )  A ^ a n  *  n ( n *  I )  ( n -  4 -  v  n )  B ^ a n + z
-  (1  -  v )  , ?G+ l )  C^a -n
-  n ( n - I )  ( n + 4 - v ò Q ^ a - ' + z  -  0 '

Since C- ar'd D^ are known already from (8) we can
solve for A^ and B^:

P a 2  ß n t . - , f  t  o t ì ,  8 ( 1 + y )  ìt ^ a ^ _ f f i  3 þ  [ r r _ " r  t , - ' _  ï l *  f f i ] ,
¡  -+ )  Pa2 B '  /1  . f  I  ß2  IB^an*'-  - ; ;õfr(r- , , [ ; -  

f f i | .  (15)

We rewrite the remaining solutions as

Paz ßn+2
" m '  ï n D  n ( n * I ) '
n - -+i Pa2 ßnu r e  "  - :  - g n D f f i ,

o^2 _ p-n+2A' .a ' -  A^an*â"3f f i ,

B, -an+z :  B -a ,+2 -y  P -n  ,  .
8 ¡ D  n ( n * l ) '

Thus the solution to (1) has been obtained.
by usins (15) and (16) in (6), and (6) in (2).
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l. The three kinds of point symmetric infinite grids. These
grids are shown with equal areas per point. As described in
the text, the triangular grid is the most efficient.

n =  E h 3
l2(l-vz)

2. The geometry and notation for supporting a circular plate
on a_ single ring of support points. P is the applied force. In
the figure six support points are used.
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3. . The support efüciency as a function of the ring radius forpo_ints on a single ring. Cases witn 2, 3, ãnó? lippo.t po¡nt,are shown. More than 6 points i, i"dirìi;;ùJhiule rrom epoints. Note the dramatic improvement *îth-increasing N,and the great sensitivitv of theïfficiånl;';,il1# normalizedradius B.

a, Jhe region of Figure 3 nearJhe minimum is expanded forclarity. Note again the small differen* üñ;eliñ : 6 and N: infinitv.
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5. The possible supporr topologies-for an lg point supporr.Three fold ¡eflectiôn s¿mmetri of tire 
-ìuppãr, 

,yrt"* i,ass¡med.in establishing the posiible topolog¡åi.- Tf,e nom"n-ctarure.gtves ln the superscript the numbe¡ of points on oneaxts or symmetry and the subscript gives thê number ofpoints on the other axis.

:1,,,,_**
6. The optimal locations of support points are given fgr the
i:i"]"l 

support configurations ihown. note 
-iuai'i¡-e- 

¿j' ;i;
l-"1 .. l"g"j1ue force appti^e$ to the central point. T¡e" plãtsare ordered in the sense of increasing 

"mr¡"n'.v. 

--'
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15. The support efficiency as a function of the number of
support points. For each number the best result is given, and
the-optimum for other topologies is also occasionally indi-
cated. The limiting value for each of the three infrnite g4ds
(triangular, square, and hexagonal) is also given. The
efficiencies for optimized continuous rings are shown--by the
dashed horizontal lines . As N becomes large the efficiency
of the best topology approaches that of a triangular grid.

16. The efficiency per support point as a function of the
number of suppori points' The vertical scale is normalized to
the limiting álcienóy, that of an infrnite triangular grid' As
expected, Ihe efficiency approaches-the triangular grid as the
nu'.u"iäf iupport pointsgrows. Only the best op-timum for
each number-ii shown. The limits set by each of the three
infinite grid systems are also indicated.
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A.l: T.ry infinite triangular.grid js shown. points are labeledwith different symbots-to. strã* irã* tnË;r:irilil be decom_
L:::_d_l11q .two. rectansutar grids,mî'äi'Ë.-inatyzed andsuperposed to give the deflections of tfre tiiã¡u-uräi gria.
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17. Two different ootimizations for the same topology areshown. one was restiicted t"^h*.i'h. ilnää io¡nts 
"t 

ttes,ame radius- . The rms deflections of t¡eiè 
'rwo 

ratherornerent optimizations are.essentially i¿"ìt¡..1. iti, exampleitrdicates the difficutties in finoini ìïã Ëöhil.

A2' The infinite hexaronar.grid-is shown. points are laberedwith different symbotito,shó* h";-'rhË"sr¡¿ äi u. decom_
L:::-d_lll". four recrangutar grios _ thaf 

-äî'-uJînalyzea 
an¿superposed to give the deflections roiiir"iå*"goial gri¿.
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